PHYSICAL REVIEW E

VOLUME 49, NUMBER 1

JANUARY 1994

Construction of symplectic maps for nonlinear motion of particles in accelerators

J. S. Berg, R. L. Warnock, and R. D. Ruth
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

E. Forest
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
(Received 17 June 1993)

We explore an algorithm for the construction of symplectic maps to describe nonlinear particle
motion in circular accelerators. We emphasize maps for motion over one or a few full turns, which may
provide an economical way of studying long-term stability in large machines such as the Superconduct-
ing Super Collider (SSC). The map is defined implicitly by a mixed-variable generating function,
represented as a Fourier series in betatron angle variables, with coefficients given as B-spline functions of
action variables and the total energy. Despite the implicit definition, iteration of the map proves to be a
fast process. The method is illustrated with a realistic model of the SSC. We report extensive tests of ac-
curacy and iteration time in various regions of phase space, and demonstrate the results by using single-
turn maps to follow trajectories symplectically for 107 turns on a workstation computer. The same
method may be used to construct the Poincaré map of Hamiltonian systems in other fields of physics.

PACS number(s): 41.85.—p, 02.90.+ p, 02.60.Gf, 03.20. +1i

I. INTRODUCTION

For analysis of multidimensional Hamiltonian systems,
especially for examining stability of orbits, it is useful to
study the Poincare return map [1,2]. In the case of an au-
tonomous system with d degrees of freedom, consider
motion on the (2d —1)-dimensional energy surface. Let
z, be a point on a periodic orbit ¢ of period 7, and X a
surface of dimension 2d —2 cutting through the orbit
transversely at z,. Any orbit beginning in a sufficiently
small neighborhood U of z; in 2 returns to 2 after a time
t(y) close to T. The time-evolution map restricted to U
is the Poincaré return map, and 2 is called a Poincare sec-
tion. The choice of the surface 2 is largely optional; it is
often defined by fixing the value of one appropriate angu-
lar coordinate, modulo 27. Like the full evolution map
in the 2d-dimensional phase space, the return map is
symplectic, which is to say that its Jacobian is a symplec-
tic matrix. This implies that the map preserves volume,
and in addition that all other members of the hierarchy of
Poincaré integral invariants are preserved. In most cir-
cumstances, the return map contains in principle all that
one needs to know about stability of orbits near y. Thus
the return map simplifies the problem by allowing us to
work in a space of reduced dimension.

For a nonautonomous system, described by a Hamil-
tonian with periodic time dependence, we think of an ex-
tended phase space of dimension 2d +1, in which the
time is a coordinate along with position x and momen-
tum p. We define the Poincaré section as the set of all
points with ¢ =19 (modT), where T is the period of the
Hamiltonian. The Poincaré map, now defined on the full
section, is the time evolution of (x,p) over a time 7T, and
as such is obviously symplectic.

The Poincaré map in the nonautonomous case arises
naturally in accelerator theory, and has long been used
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(under another name, full-turn transfer matrix) to discuss
linear aspects of the motion. Under appropriate condi-
tions (valid for large machines), the accelerator Hamil-
tonian [3-5] may be defined in terms of a closed refer-
ence orbit, with a coordinate s representing arclength
along this orbit, coordinates x, and x, representing
transverse displacements with respect to the reference or-
bit, and a time-of-flight coordinate 7=t —t,, where 7 (s)
is the time at which a particle arrives at location s and
to(s) is the corresponding time for a particle following
the reference orbit. The corresponding canonical mo-
menta are p|, p,, and p,=—06=—(E —E,)/E, the rela-
tive deviation of the particle’s total energy E from a nom-
inal value E, the latter being the unique energy of a par-
ticle moving on the reference orbit [6]. The p; are related
to the slopes dx; /ds; for the exact definition see [4] and
[5]. In this Hamiltonian description, we of course neglect
dissipative effects, which are primarily due to synchro-
tron radiation and are very small in proton accelerators.
The timelike azimuthal coordinate s is the independent
variable in Hamilton’s equations. Since the reference or-
bit is a closed curve, the magnetic fields that determine
the Hamiltonian are periodic in s, with period equal to
the circumference C of the reference orbit. Thus we have
a nonautonomous system in three degrees of freedom,
with the Hamiltonian depending periodically on the in-
dependent variable s (sometimes called a system in ‘31
degrees of freedom™). The Poincaré section in this prob-
lem has the appealing feature of corresponding to a fixed
spatial location in the machine; it consists of all points in
the extended phase space with s =s'©’ (modC). The re-
turn map gives the evolution of z=(x,p,,X;,p,,7,0)
over one turn, and is called the full-turn map. We shall
also be interested in n-turn maps with n a small integer.
In practice, the best developed way to compute full-
turn evolution is tracking [7-10], in which the equations
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of motion are integrated in small steps of s through the
lattice of magnets, using a numerical algorithm that
guarantees the symplectic condition, a symplectic integra-
tor [11]. Tracking is expensive in computer time, espe-
cially in large machines where there may be thousands of
superconducting magnets that produce (often inadver-
tently) nonlinear forces. Some small machines also are
expensive to simulate, owing to relatively complicated
magnetic fields and failure of small-angle approximations.
Because we wish to study the fates of many different or-
bits for different initial conditions, it would be desirable
to summarize the full-turn map in a single formula, rath-
er than defining the map as the result of tracking. If one
evaluation of the formula could be done in much less
time than it would take to track a particle for one turn,
we could save a great deal of computer time in studying
long-term stability of orbits. This possible advantage has
to be weighed against the cost of constructing the map.
There is evidence from tracking that the full-turn map
is usually a relatively simple and smooth function of ap-
propriate phase-space coordinates. This can be true even
if the accelerator ring is very large, and in fact is more
the case in the Superconducting Super Collider (SSC),
which is conservatively designed to be fairly linear, than
in small but highly nonlinear rings typical of advanced
synchrotron light sources. Thus the problem of
representing the map should not be formidable. In our
view, it should be approached in the spirit of modern nu-
merical analysis, relying on theory and experience in ap-
proximation and interpolation. On the other hand, much
of the work to date on maps for accelerators has relied on
a simple Taylor expansion [12-15]. A truncated Taylor
expansion has two serious shortcomings: (a) it cannot
satisfy the symplectic condition exactly, and (b) it is not
suitable for global representation of an arbitrary smooth
function, being useful only for analytic functions with
singularities not too close to the region of interest [16].
Although point (a) has received the most comment
[14,15,17], we think that (b) is also noteworthy. There
exist various convenient means to approximate functions
of a much wider class; these deserve to be investigated.
The Taylor series may be viewed as an extrapolation,
using properties of the function at a single point. Better
results can be expected from a representation using prop-
erties of the function at many points. This representation
can either interpolate values of the function (perhaps
values of derivatives as well), or else approximate many
values without strict interpolation, say, in a least-squares
sense [18]. For instance, interpolation by spline functions
is a robust and well-studied technique, backed up by pre-
cise convergence theorems [19-21,18]. A cubic spline
approximation of a function with a continuous second
derivative converges uniformly (with useful estimates on
the rate of convergence) as the maximum distance be-
tween interpolation points goes to zero. The first two
derivatives of the spline converge uniformly to the
derivatives of the function. Since analyticity is not re-
quired, a spline representation is possible under condi-
tions such that the Taylor expansion would diverge.
Another possibility is to use approximation by polynomi-
als, either interpolating or noninterpolating. Again,

there are convergence theorems that avoid analyticity, re-
quiring at most a little smoothness. An example of a
noninterpolating approximation is the truncated Fourier
series, an expansion in orthogonal trigonometric polyno-
mials that gives approximation in a least-squares sense
over an interval [18]. In the following, we propose a
combination of truncated Fourier series in angle variables
and spline interpolation, the latter for the action and 6
dependence of the Fourier coefficients.

In this paper our aim is to find an approximation to the
map satisfying three criteria: (a) it should represent the
full-turn evolution of the assumed Hamiltonian to high
accuracy; (b) it should satisfy the symplectic condition
exactly; and (c) it should be possible to iterate the map
quickly, with reasonable computer storage requirements.

Criterion (a) is problematical, since there is no clear
notion of how much accuracy is sufficient, and the issue is
clouded by the fact that the Hamiltonian itself is not
known precisely, especially in machines with supercon-
ducting magnets that have substantial unpredictable
fields due to variations in conductor placement. Never-
theless, we think that the map for a particular Hamiltoni-
an should agree well enough with accurate tracking of
that Hamiltonian to give the same resonances and invari-
ant surfaces down to some fine scale. Future work should
try to determine the necessary scale for agreement. We
are not ready to take the view that a discrepancy compa-
rable in magnitude to the uncertainty in the Hamiltonian
is acceptable, since the discrepancy could be an artifact of
the map construction technique, and might not have the
physical character of a change in the map due to a
change in field strength.

Criterion (b) is straightforward. In practice, “exactly
symplectic” means “symplectic to computer precision,”
and the latter can be given various precise meanings.
(For now, we shall not consider recent proposals to elimi-
nate roundoff error by working in integer arithmetic on a
finite lattice; see [22,23]. Roundoff error in conventional
tracking codes is treated in [24,25]). Symplecticity in this
sense is achieved at a certain cost. In certain applica-
tions, it may be sufficient to meet the symplectic condi-
tion less exactly: for instance, when only a few thousand
iterates of the map are needed. The construction of ap-
proximate invariants along the lines of [26] is one such
application. Approximately symplectic maps amenable
to fast evaluation, in explicit rather than implicit form,
are easily obtained in a simpler version of our treatment
[27]. In applications where one wishes to study long-
term stability of single orbits, say, for the 107 turns or so
required for injection in the SSC, it seems important to
maintain the symplectic condition as well as possible. It
is well known that nonsymplectic integration algorithms
or maps lead to spurious long-term behavior, for in-
stance, an eventual smearing of what first appeared to be
an invariant curve [28].

There are two ways to enforce the symplectic condi-
tion. The first method, which we adopt, is to construct a
mixed-variable generating function (also called a genera-
tor) that defines implicitly the canonical transformation
corresponding to full-turn evolution. It is necessary to
solve a nonlinear equation to find the explicit evolution,
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but that is quickly accomplished by Newton’s method
since there is a good guess for the answer in the form of
an approximate explicit map. The situation is similar for
implicit integrators (predictor-corrector methods) for or-
dinary differential equations, in which certain good sta-
bility properties of implicit methods are obtained at the
modest additional cost of dealing with a nonlinear equa-
tion. Although the result is not an explicit formula for
the map, the practical effect is the same as if it were, since
the Newton iteration is a sufficiently fast process.

The second method is to write the map as a composi-
tion of many simple maps, each being obviously symplec-
tic and in explicit form. This is exactly what is done in
computing full-turn evolution by an explicit symplectic
integrator, with the number of composed simple maps be-
ing very large in that case. Irwin [29] has put forth a
different and interesting idea in this vein, in which the
map is again written as a composition of simple symplec-
tic maps (kicks and rotations, in the language of accelera-
tor physics), but the simple maps are fewer in number
and do not correspond to small time steps as they do in
symplectic integrators. Rather, they somehow represent
lumped effects of many time steps. We make further
comments on this approach in Sec. VI.

Our method begins with a given map,

’

z'=Tylz;n) . (1.1
Here z is the initial six-dimensional point in phase space,
and z’ its image under the n-turn evolution. The map T,
called the source map, need not be represented by a
closed formula; it is merely some available algorithm giv-
ing the n-turn evolution, and can be defined as the result
of applying a symplectic tracking code. In any case, T, is
assumed to represent the motion of interest with ade-
quate accuracy. Our goal is to find a generating function
that defines a map in close agreement with T,. If T} is
not exactly symplectic, we of course cannot achieve arbi-
trarily close agreement.

For convenience and economy in the calculations re-
ported, we have taken the source map to be a 12th-order
Taylor series that gives an accurate (but not exactly sym-
plectic) representation of a realistic model of the SSC
[13]. This map was derived from a tracking code [8] by
the method of automatic differentiation [12]. Our con-
struction makes this map symplectic. In general, it
would be preferable to define T, by a symplectic tracking
code, so as to exclude nonsymplectic effects throughout.
We anticipate such a course in future work. Figure 1
shows a parameter 17 measuring violation of the symplec-
tic condition for the source map, plotted as a function of
transverse displacements x ;,x,. The definition of 7 is

n:maxi,j](JTSJ—S),jl , (1.2)
where J is the Jacobian of the transformation and J 7 its
transpose, and S is the symplectic matrix. Notice that 7
turns up rather sharply at large displacements, and in
fact reaches unacceptable levels in the domain of interest
[14]. Since Taylor-series maps of order much beyond the
12th are too expensive to construct and iterate, we see a
clear need to supplant the Taylor method [13]. Faced

log,on
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FIG. 1. Violation of symplecticity 7, defined in Eq. (1.2), for
12th-order Taylor-series map of SSC, plotted vs the logarithms
of the x and y displacements at which the map is evaluated. The
other initial conditions are p, =p, =0, 6=5X10 *,

with nonsymplectic behavior of Taylor series, some au-
thors have attempted to suppress the most egregious
effects by simple expedients; for instance, the “dynamical
rescaling” of Ref. [14], and a procedure of expanding the
exponential of a Lie generator to an order much higher
than that of the generator itself [15].

Because the generating function can be obtained from
any tracking code, without any internal modification of
that code, our method is quite general and can take ad-
vantage of earlier extensive work in which codes for par-
ticular accelerators have been developed. It can work
with codes that do not invoke the global Hamiltonian for
the accelerator as described above. As has been em-
phasized by one of the authors [10], the global Hamiltoni-
an is an approximation that is conventional but not suit-
able for modeling all accelerators. It fails particularly for
small rings with magnetic fields that are not so sharply
localized as those in large proton rings.

In Sec. I, we define notation and set the stage for con-
structing the generating function; the Appendix supple-
ments Sec. II. In Sec. III, we show how to construct the
generating function, including details of numerical
methods. The scheme of Secs. II and III applies in any
dimension, and in principle could be applied to find the
Poincaré map of any problem in Hamiltonian mechanics.
A treatment of the third degree of freedom especially
efficient for the accelerator problem is described in Sec.
IV. In Sec. V, we report numerical results in two and
three degrees of freedom for the SSC. In Sec. VI, we give
conclusions, discuss the outlook for further work, and
give a brief survey of related work.

II. GENERATING FUNCTION OF A POINCARE
MAP IN ACTION-ANGLE COORDINATES

In this and the following section, we show how to con-
struct the generator of a map that approximates the
source map. The method is described for a general map
in d degrees of freedom (on a 2d-dimensional Poincaré
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section). In the accelerator problem, the method will
usually be applied with d =2, for the two degrees of free-
dom of motion transverse to the reference orbit (betatron
oscillations). Although the third degree of freedom asso-
ciated with energy variations (synchrontron oscillations)
could be included in the same way, it is usually more
efficient to treat it by a method specially adapted to the
accelerator problem, as explained in Sec. IV.

We begin with the given n-turn source map T, as no-
tated in Eq. (1.1). Henceforth, we suppress the index n,
which does not affect the map construction technique.
As was mentioned above, T, is preferably defined as the
result of applying a symplectic tracking code. We as-
sume that z=0 is a fixed point of the map, 7;(0)=0. (In
general, a tracking code will have a fixed point close to
the origin, which can be moved to the origin by a canoni-
cal translation of coordinates.) The accelerator is
designed so that the fixed point is linearly stable. Orbits
beginning near the fixed point correspond to small devia-
tions from a desired “ideal orbit.”

Before going on to construct the generating function,
we shall sometimes elect (or be required) to make a pre-

liminary canonical transformation,
Z=A(z), (2.1)

J

U={L®| 0<I" <1V <[P dPe[0,27], i=1,...

The required condition € is that the image of % under T
lie within a similar (bigger) product of annuli, again
bounded away from zero. In many cases, the source map
T, will satisfy condition @ without preconditioning, if
the set U is appropriately restricted.

In Fig. 2 (and a similar plot for the second dimension,
not shown), we show numerical results indicating that
this condition is met for the preconditioned map used in
our later calculations. Figures 3 and 4 show results for

and thereby obtain a map T on the new variables
Z=x"V,pV . x9 p) Tis called the precondi-
tioned source map, and has the form

T=ATy A", (2.2)
The preconditioning transform A is chosen so that the
origin Z=0 is again a fixed point of T, and so that T
satisfies a technical condition € that arises when we
determine Fourier coefficients of the generator. To de-
scribe the condition, let us make a further canonical
transformation to action-angle variables (more properly
called canonical polar coordinates, since this action is not
invariant as in classical action-angle theory). The action
I'" and angle ®'” are defined by

X(i)=(21(i))1/ZCosq)(i)
. . . (2.3)
PO=—2I'"M%in®", i=1,2,...,d .

Henceforth, we include the change to polar coordinates
as part of A. We seek to approximate T on a product of
annuli in the (X, P%) planes, namely, on a set U defined
by actions in intervals bounded away from zero:

(2.4)

—

another map (not encountered in the present study) that
does not satisfy condition €. The image of % is not
bounded away from the origin, and that creates an awk-
ward situation for our method, which depends on the use
of polar coordinates. This example is the Hénon map
[describing a rotation followed by a sextupole Kick,
(x3—3x,x2)8(s)], considered in a region of phase space
where I, is much larger than I,. The motion in the x,-p,
plane stays within a narrow annulus. This quasiharmonic

P

FIG. 2. The source map T (the Taylor-series map for the SSC) maps the points in the left figure into the points in the right figure.
This map satisfies our condition €. The annulus containing the mapped points is only slightly larger than the annulus containing the
original points. The second dimension, not shown, has similar character.
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P{}

P,
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FIG. 3. A map T that does not satisfy condition ¢: points are not mapped into a product of annuli; rather, there are image points

that lie close to the origin of the x,-p; plane.

motion provides something resembling a large external
driving force to the x,-p, motion, through the term
x38(s) in the equation of motion for x,. This leads to
essentially noncircular motion in the x,-p, plane.

Similar behavior occurs in some realistic accelerator
models, at least when one action is much greater than the
other, and was found to be especially noticeable in the
strongly nonlinear lattice of the Berkeley Advanced Light
Source (ALS). In many cases (certainly for the Hénon
map), one can avoid this difficulty by a preconditioning
transform A determined by the method described in the
Appendix, namely, a rough normalization of the original
map by normal-form perturbation theory. Precondition-
ing by this method was applied in the calculations of Sec.
V (but may have been unnecessary in the cases treated).
In extreme examples preconditioning could be more
difficult, presenting a real obstacle to the present method.

Our algorithm will produce an approximation T, to T
over the domain U. We expect, and find in practice, that
orbits of T, beginning on some subset U,C U stay within
U, over many iterations. Typically, U, is a product of
annuli somewhat smaller than those defining 9/; thus the

approximation is useful for long-term evolution of orbits
beginning on U,

The computer code to iterate the map T, will be ar-
ranged to stop if the orbit leaves the region %. An orbit
leaving U could possibly be stable but visit a region in
which extra effort is required to construct the map, either
because of a failure of condition €, or the necessity of
greater accuracy or a larger range of action interpolation.
This might happen, for instance, if there were an
unpredicted large exchange of energy between two phase
planes. If the orbit were to leave U in the course of a
long run, one might try to continue from the last point in
9 with a map designed for a different region.

We define a special notation for the map in polar coor-
dinates. If the map T takes (I, ®) to (I',®’) then

I'=I+R(I,®), o'=0+O(1,P) . (2.5)

Here boldface letters represent d-dimensional vectors.
Because time evolution is a canonical transformation,
there is a canonical generating function that defines im-
plicitly the same map. We choose the generating func-

FIG. 4. The second dimension for the map shown in Fig. 3.
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tion F to be a function of I and ®’, and write
F(I,®')=1-®'+G(1,®’'), where the first term induces
the identity transformation. The map is defined by the
equations

I'=I+Gp(1,®'), ®=P'+G{(L, "), (2.6)

where subscripts indicate partial derivatives [30]. Com-
paring (2.5) and (2.6), we see that

Ge(I,®)=R(LP), G{(LP®")=—O(,®). (2.7

Our task is to integrate these differential equations to
determine G, accounting for the fact that the given func-
tions are expressed as functions of I and ®, while the
solution is to be expressed as a function of I and ®'.
Since the givens R and © are vectors and the unknown G
a scalar, there is redundant information; we shall not be
required to use all components of the given vectors.

By the definition of the angle variable, G must be
periodic in ®' with period 27. It therefore makes sense
to represent G as a Fourier series in that variable:

G(LP®)=3 gn(De™® . (2.8)

The Fourier expansion facilitates solution of the

differential equations.

III. METHOD OF CONSTRUCTING THE
GENERATING FUNCTION

A. Computing g, (I), m70, for fixed I

Referring to Egs. (2.7) and (2.8), we compute g, (I) for
m+0 at fixed I. This is given by

gn(D)= fz”dcp'R (L) ™, 3.1

(27T)dlm

where the only constraint on the choice of a is that
m ,70. Since we know the above integrand as a function

of ® and not ®’, we change to ® as the integration vari-
able:

1
(2m)%im,,

X [ d® R (1, ®)e ~im e im0
0

gm(D=

Xdet[1+Og(L®)] . (3.2)

We assume, and verify in applications, that
det[1+04(I,®)]#0, so that the transformation is one-
to-one.

Since the source map gives us the value of R(I,®) and
O(I,®) at any desired points, we can turn these integrals
into discrete summations, and evaluate the source map
on a uniform mesh in ® to find the coefficients (m70):

—im-®. —im-O(L,®P.)
D= R, j T
8m(D) im. HJB ? e
Xdet[1+O4(L®;)] . (3.3)

Here <l>“’—21rja/Ja, and the summation covers the

points j,€1{0,...,J,—1}.

Note that in Eq. (3.3), we have applied the rule that is
usually used in computing a discrete Fourier transforma-
tion. While this discretization is justifiable (it is trapezoid
rule integration), the reasoning is not identical to the
reasoning behind the discrete Fourier transformation, be-
cause there is dependence on m that is outside of the fac-
tor e '™®_ In choosing the number of mesh points, we
typically take J, to be approximately four times the larg-
est value of |m |, which is about twice what the analog of
the Nyquist criterion for this problem would require.

Since the source map typically returns ®' values on
[0,27r], simply taking © =@’ —® will result in a discon-
tinuity when @’ crosses a boundary of the interval [0,27].
Thus the map creation routine is arranged to add or sub-
tract 27 from O, such that there is never a jump of more
than m, say, from one adjacent ® mesh point to the next.
Then @’ does not change abruptly as a function of ®, and
is suitable for Fourier analysis.

Computing O4

The derivative O at the mesh points may be expressed
directly in terms of © evaluated at mesh points. Suppose
that a function f(®) is given exactly as

(@)= fpe™®,

(3.4)

m,€{—M,,...,M,}, 2M, +1=J,

A little computation then yields
ky—J

af —1 a (__1) a a
_ 1 i . 3.5
3d'® | Tz 2= s1n[ﬂ'(k —Ja) /4] 3.3)

ja#ka

where j’=(ky, ..., kg sjarKgs1s-- )

B. Action interpolation

The action dependence of the coefficients is assumed to
be of the form

g,,1(1)=§‘,g,,,,j 182U, (3.6)

where {B("”} 2, are sets of linearly independent basis
functions. We have chosen to use B splines in all dimen-
sions, but any set of linearly independent basis functions
will be the same in formal aspects.

We compute g, (I) using Eq. (3.3) for every action
point in the set J={I|I'?€S,}, where S,={I\*};~
Computing g,, ; then only involves inverting the matrlces
A{S=B{*I} ("’] , which are of low dimension.

B splines

The reason for choosing B splines is that they have “re-
stricted support” [19]. In other words, they are nonzero
only over a small subset of our entire domain. In a sum
over basis functions at a single point, only a few terms are
nonzero. For example, for quadratic B splines in one di-



728 J.S. BERG, R. L. WARNOCK, R. D. RUTH, AND E. FOREST 49

mension, only three basis functions are nonzero at any
given point. This greatly speeds evaluation of the map.
We evaluate the B splines using the recursion relation in
de Boor, [19, p. 131].

C. Computing g,

For m=0, we must use information from the angular
part of the map, O(I,®). For g,, the method described
in Sec. IIT A yields

98
—-—= 2 O(I,@j)det[ 1 +O4(1,®)] . (3.7)
) | HJB ;
For any sen51ble set of basis functions, there should be
unique sets of constants (¢\®, ..., c\® ) such that
3B Y=1. (3.8)
J

In other words, it should be possible to represent the con-
stant function exactly. For example, for B splines all the
¢;=1; for the polynomial basis {I,x,x° ...}, the
coefficient of 1 would be 1; the others would be zero.

By performing the summations in (3.7), we can obtain

the values of ago/al at the action mesh points

L= L2, LY, ko, €(1, ... ng]. For the first
component, the der1vat1ve of Eq. (3.6) becomes
98¢ dB
(a)( yla)
AP |1 Eg‘” dI'® |» GEB}BJG T, ) - (3.9)
8

Because the dBjB/dI'B) are linearly dependent [see Eq.
(3.8)], and since there are [[,n, action points for equally

i

many basis functions, this system is overdetermined. To
remedy this, in the first dimension, choose a basis func-
tion B’(;” for which c,‘l”#O, and solve for it in terms of

the others:

1
1 — _ p(l
Bi'=—5 |1— 3 ¢;"B}" (3.10
CII JFELD
Then, for =1, (3.9) becomes
(1
g dB 1
= Y — 1 B2, (311
aI(l) I, 2 JdI(l ) a( 1 Ja a
j #1 ) I]‘“
where
o . i
V=g da)s ?’j:go,j’cu,go,j' .

h

We ignore data for one value of k,, call it p;, so that
we have an invertible linear system for y; containing
(n,—1)n, - - - ny; equations and equally many unknowns.
[Strictly speaking, the only necessity is that for each
value of (k,,k5, ..., ky), there is exactly one value of k|
that is not used. It is merely simpler to choose the same
value for all.] This system can therefore be solved
uniquely. Since the y; have been determined, to get all
the g;, we only need to solve for the g¢ j (i.e., the gg ; for
which j, =1,), of which there are clearly n,n; - - - n,.

Writing out (3.9) for the I'® (B#1) derivative, re-
arranging terms, and substituting what we have already
found, we get

9o dB(B ) dB (@) yla)
(1) (a (a) a a
) 2’}/ (B) H B; (Ik 2 80,i 53 1B H B: (Ik ). (3.12)
1 aI(B) I ] dI(ﬁ) I/ kg o) Ja 1 j dI I/ k5 ag (1Bl Ja P
Gy=
[
Note that, from the definition, ;=0 when j, =/,. The than a certain number at every action point. In other

left-hand side of this is known from the steps above.

To obtain the requisite number of equations of the
form (3.12), we choose n,n; - -+ ny distinct values of the
vector (k,, k5, ..., k). The first index k; may be chosen
arbitrarily [it may be different for each choice of the
(ky, ks, ..., kg)]. Now (3.12) is simply the problem we
started with [see Eq. (3.9)], only reduced by one dimen-
sion. We recursively apply the above procedure until
only one dimension remains. We are then left with one
free constant at the end of the process; this can be set to
zero. We have now solved for all of the g ;.

D. Mode cutoff

To reduce iteration time without sacrificing symplecti-
city, we can remove all the nonzero Fourier modes whose
size relative to the largest nonzero Fourier mode is less

words, we first find the value of the largest nonzero
Fourier mode at each action point,

M, =maxy olgm (L)l , (3.13)

and then for each mode we compute the largest value
over all action points of the ratio of the mode to this larg-
est value:

(3.14)

| &m(L)
fm:man Em' Ly }

M,

!

Given a “mode cutoff” x, we keep all modes of index
m+#0 such that f, >y. The m=0 mode is always re-
tained.
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E. Iteration of the map

Since the map is given implicitly in terms of (I,®’), it
must be evaluated using a Newton iteration. First, an ini-
tial guess must be supplied, using an explicit map to get a
guess for ®’. Then the Newton iteration is done to get
@’ to machine precision. The step going from a guess ¥,
to an improved guess @), is

®,, =P,— [1+Gp(L®,)]"!

X[®, +G,(I,®,)— D], (3.15)
where
3’G 3’G
aI(l)aq)r(l) aI(l)a(b;(Z)
2 2
GIQ'—_‘ a G a G R . (316)

81(2)a¢1(1) aI(Z)aq):(Z)

The Newton iteration is stopped based on the value of the
Euclidean norm of the error ®; +G(I,®,)—®. Once
the error is less than a given small value, the iteration will
stop when the error reaches zero, or fails to decrease
from one iteration to the next. The iteration will also be
stopped if too many iterations are required. This is con-
sidered an error condition, and is treated as such in our
code.

The explicit map to initialize the Newton iteration can
be fairly crude, requiring negligible time to evaluate. We
typically take just the first few terms in a Fourier-spline
expansion (usually y=1). Once ®' has been obtained, I'
is computed directly from (2.6).

F. Potential improvements

There are areas in which continuing research would be
helpful for this method.

1. Using more of the data

Notice that we are effectively only using one com-
ponent of R or © in computing the generating function
coefficients. We could conceivably use the other
component(s) in doing the action interpolation for the
generating function coefficients.

We shall briefly describe how to do this in two dimen-
sions; it should be clear how to do it in higher dimen-
sions. Let us say that we have data on an n Xm grid in
(I, 1'?). We will treat three cases: (1) No component
of m is zero; (2) One component of m is zero; and (3)
m=0. For each case, we will have a different set of basis
functions, M and N of them for the two dimensions. The
system will be solved in a least-squares sense, and so we
will require at least as many equations as unknowns.

If no component of m is zero, we have equations for
both components of R and both components of ©, giving
4mn equations. In this case, we need MN <4mn. If only
one component of m is zero, then we have equations for
both components of ©, but for only one component of R,
and thus MN <3mn. For m=0, we only have data for

©. We must recall that the derivatives of the basis func-
tions are linearly dependent, so the relationship here be-
comes MN —1=<2mn.

Construction of the map would require more time, but
evaluation could potentially be just as fast if B splines
were used. Because more basis functions are being used
for a given set of data, some improvement in accuracy
could be expected. Or, for a given accuracy, it might be
feasible to construct a map with fewer data.

2. Optimal basis function choice

It can be seen that there is a significant variation in ac-
curacy that is obtained by choosing various basis func-
tions for a given number of mesh points. In the case of
splines, there is a significant body of literature that deals
with “optimal” choices for data points and spline knots
for a given order of splines. It might be useful to imple-
ment these algorithms; see [19, Chap. XIII] and [31].

IV. THREE DEGREES OF FREEDOM,
WITH LOCALIZED rf ACCELERATION

In circular accelerators, the radio-frequency accelerat-
ing fields are concentrated in a few short cavities; often
there is only one cavity. Since we ignore synchrotron ra-
diation, we then deal with particles that have constant
energy over most of a turn. We can decompose the map
into parts for constant energy and parts corresponding to
the cavities. The former are maps in two degrees of free-
dom, depending parametrically on the energy, and can be
handled by the methods of Secs. II and III. The latter
have a simple, explicit description, since to a good ap-
proximation only the coordinate § is changed when the
particle passes through a cavity, and the amount of
change depends only on 7. Thus the cavity maps are al-
most trivial, and the only significant new problem is to
represent the parametric energy dependence of the
constant-energy maps. The resulting composite map will
usually be much more efficient for practical purposes
than a map with all three dimensions treated in action-
angle coordinates by the technique of Secs. II and III.
This advantage arises because only two dimensions of
Fourier analysis are required.

In this section, we give details of this description for
the case of one rf cavity per turn. An extension to allow
several cavities is possible, but has not yet been imple-
mented numerically. Now the source map T, will have
the form

To=CoM, , 4.1)
where C represents the cavity and M|, the rest of the
ring. It is usually a good approximation to suppose that
the cavity has zero length in the s direction. To take ac-
count of a nonzero cavity length L, and still deal with a
full-turn ring map, one can redefine the cavity and ring

maps to be
D~'c,D”!', DM,D , 4.2)

respectively, where D is the map for a “drift” (force-free
motion) over a distance L /2. The new ring map starts at
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the center of the cavity, proceeds force-free to the end of
the cavity, then around the ring to the beginning of the
cavity, then force-free to the center; thus it represents a
full turn as we require, albeit with some interludes of
fictitious motion. The new cavity map starts at the
center, proceeds force-free backward to the beginning of
the cavity, then forward through the full cavity, then
force-free backward to the center.

The map M, does not change 6, but depends on &,
since particles of different energies feel different trans-
verse forces, owing to differential bending of trajectories
in fixed magnetic fields. On the other hand, M, changes
7, since particles of different energies have different times
of flight. The map C, depends primarily on 7 (on the
time of arrival in the cavity, which is equivalent to the
phase of the rf voltage), and produces primarily a change
in 8. In principle, it depends weakly on x, p, and §, since
these variables determine the trajectory through the cavi-
ty, and the field is not completely uniform. There are
also changes in x, p, and 7 during transit through the
cavity, but for a typically short cavity, they are extremely
small. Ignoring all these minor effects, we can write the
maps as

My(x,p,7,8)=(x,p,7,8) +My(x,p,8) ,

(My)e=0, (4.3)

Co(x,p,7,8)=(x,p,7,8)+ Cy(T) ,

(@), =0, i#6 . (4.4)

The four-dimensional origin (x,p)=0 is a fixed point of
M, only at §=0. In cases of interest, there is a nearby
fixed point that is a function of §, and that function is
easily determined by an appropriate numerical or semian-
alytic method. Since the map construction of Secs. II
and IIT works best when the fixed point is at the origin, it
is useful to make a preliminary translation of the origin
to the fixed point before attempting the construction.

Let (xy(8),py(8)) be the fixed point of M. The
translation of origin,
X=x—x(8), p=p—po(d), 4.5)
is induced by the canonical generator
F(p,X,8)=—p-X—p-x(8)+X-py(6) , (4.6)

where x= —Fp, p=—F,. Since F depends on &, the
canonical transform necessarily entails a change in 7:

Fer—Fy=1+p-xy(8)— (x—x4(8))-py(5) . @.7)

The variable 7 lacks the direct physical interpretation of
7; it is merely the canonical conjugate of —8, and must
be treated as such when discussing the generating func-
tion of M, in the new coordinates.

Let T denote the map corresponding to the aforemen-
tioned translation of origin, where T(x,p,7,8)
=(X,p,7,6). We now seek the generating function of
TM, T, the ring map expressed in coordinates cen-
tered on the fixed point. As explained in Sec. II, the con-
struction may require or be facilitated by a precondition-

ing transformation A. Since A is canonical and also
dependent on §, it will produce a further change in the
timelike coordinate 7— 7. Including the change to polar
coordinates in A, we have

A(X,p,7,6)=(D,1,7,8) . (4.8)
The total map in fully transformed coordinates is now
(4.9)

(4.10)

T=CM,
C=ATC,T 'A, M=ATM,T A .

Since M|, is independent of 7, it follows that M is also in-
dependent of 7.

We are now prepared to find the generator of
M =M (®,1,5) by the method of Secs. II and III. The
construction of Fourier coefficients of G is carried out for
each & on a suitable mesh. Our previous interpolation
technique, extended to treat & and I on the same footing,
then produces the desired coefficients g,,(I,6). Note that
for m=0, it is necessary to use information from the
source map on all three momentum derivatives: dg,/dl,,
0g¢/91,, 9g,/035. The 6 derivative is obtained from the 7
component of M,

=7+ Ms1,P,0) , 4.1D
and the corresponding relation for the generator map,

F=r+Gy(LP,5) . (4.12)

)

Computing the m=0 coefficient with respect to ®' and
discretizing, we find a result like (3.7), but with the oppo-
site sign:

98, 1

-= ML, P, 6)det[ 1 +OH(I,P.,6)] .
35 IBIJ/}? 5( j )de [ q;( j )]

(4.13)

Now the method of Sec. IIIC, applied in three dimen-
sions, integrates the three derivatives to yield the func-
tion go(I,5).

In comparing iteration time for the map T with that
for the corresponding map in two dimensions, we note
first that evaluation of the map C, even allowing for the
necessity of computing A 7 and its inverse, is not costly.
(We assume that A is not very complicated, as is true for
our SSC map, and probably true in any successful appli-
cation.) The main new cost is in M, for the extra time re-
quired to interpolate the Fourier coefficients of G in 6.
Fortunately, that cost is moderate, as is shown by the re-
sults of Sec. V.

Finally, we mention an approximation that gives a fur-
ther simplification in treating the third degree of free-
dom. The synchrotron oscillations, corresponding to
motion in the (§,7) plane, are often not much affected by
the transverse degrees of freedom, although they have an
important affect on the latter in the long term. The syn-
chrotron motion is then well described as an autonomous
oscillator; in a first approximation, it is harmonic and fol-
lows an ellipse in the (8,7) plane. Thus we are led to a
model in which 8(s) is a given function that appears in
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the Hamiltonian for betatron motion, giving the Hamil-
tonian a new explicit s dependence. In all other respects,
the synchrotron motion drops out of the problem, and
the time-of-flight variable 7 can be ignored. The corre-
sponding map is of course symplectic, because it derives
from an s-dependent Hamiltonian in two degrees of free-
dom. Some tracking codes use this scheme, and avoid
calculation of the time of flight. Note that the Hamil-
tonian is no longer periodic in s with period C, but we
still study the map on the section s =0 (modC) of extend-
ed phase space.

In the example treated in Sec. V, we have in fact adopt-
ed this approximation, since it is quite sufficient to test
our method in a realistic way. The main point is to
demonstrate that realistic variations of § can be accom-
modated in the interpolation scheme, without excessively
many interpolation points. Although the change of § at
each turn does not have exactly the value it would have if
7 were computed, it has approximately the same magni-
tude and a similar physical effect. For 8 at the nth turn,
we take the model of harmonic synchrontron oscillations,

8(nC)=8ysin(2mv,n +¢) , (4.14)

where v, is the synchrotron tune. For the SSC, v,= ﬁ,
and §,=5X10"* A full treatment including time of
flight would require little additional computer time for
construction of the map, and only a modest increase

(perhaps 20%) in iteration time.

V. RESULTS FOR MAP OF THE SSC

Using a 12th-order Taylor-series model of the SSC (for
the previously considered 4-cm dipole bore) as the source
map T,, we have run several tests of our code. This
source map agrees with the tracking code from which it
was derived to about one part in 10°, out to the largest
amplitudes that we consider. A preconditioning transfor-
mation as described in the Appendix was applied. All
tests were run on an IBM RS6000 model 320 worksta-
tion. All code was written in C and compiled with the
IBM compiler (OS version 3.1.7).

@
)

A. Two dimensions

1. Accuracy and iteration time

We chose two different initial conditions at which to
test the code: a large action (3.0,3.0) and a small one
(0.1,0.1). Our arbitrary units of action are such that
(3.0,3.0) corresponds to a trajectory passing through
x,=~4 mm, x,~2 mm, p,=0, p,=0, at §=5X10"%.
This point is close to the short-term dynamic aperture for
two-dimensional (2D) tracking at §=5X10"*, and just
below the three-dimensional dynamic aperture reported
in [13]. (At amplitudes beyond the short-term dynamic
aperture, orbits are lost from the machine within a few
thousand turns.) The initial condition is a point in ac-
tion space centered in the domain of spline interpolation.
To determine the interpolation domain, we started at that
point in action space and ®=0 in angle space, iterated
the source map for 1000 turns, and found the action
range encountered in that many turns. We then added
10% of the range to the upper and lower bounds of the
range. Figures 5 and 6 show pictures of the motion at the
low and high actions, respectively. For each dimension,
the square root of the action mesh points I ,‘(‘i’ were taken

to lie on “expanded Chebyshev points,” as described by
de Boor [19, p. 27]. The spline knots are chosen to be at
the points

(a) (a) e (a)
() — Iia +Iig—l+ +Iiik—2
tk+i_ k—1

) (5.1)

where k is the spline order (3 for quadratic). This choice
is motivated by de Boor [19, p. 219].

The relative accuracy of the map is plotted in Fig. 7,
and iteration time in Fig. 8. Relative accuracy is defined

to be
€=sup, e5A(zo) , (5.2)

where

FIG. 5. Result of iterating the 12th-order Taylor-series map of the SSC starting from a single initial condition. The initial action
is I=(0.1,0.1). This is the smaller amplitude for the test of our mapping algorithm.
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FIG. 6. Result of iterating the 12th-order Taylor-series map of the SSC starting from a single initial condition. The initial action
is I=(3.0,3.0). This is the larger amplitude for the test of our mapping algorithm.

1
Alzy)= 4

‘1(1)_161)
Igl)

+]oV— M| + |2 — R | . (5.3)

The variables with subscript O refer to the result of applying the source map, and the unsubscripted variables refer to
the result of applying the map that we have constructed. The set S consists of the points

I'e{[;* +(n /10)(1/i‘;)+1 —L)n=0,...,9 k=1

@ =0, with the mesh points I;*’ chosen as above.

Both relative accuracy and iteration time are plotted
versus the mode cutoff parameter y described above. No-
tice that for large cutoffs, the relative accuracy of the
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FIG. 7. Relative accuracy ¢, defined in Eq. (5.2), of various
2D generating function maps which are constructed to be valid
on a narrow domain of action. The curves are plotted vs the
mode cutoff parameter Y, defined in Sec. III D, and for various
spline orders for action interpolation, numbers of action mesh
points, and amplitudes. Solid lines are for maps about
1=(0.1,0.1), while dashed lines are for maps about
1=(3.0,3.0).

N (19 N

map is very roughly equal to the mode cutoff. For small-
er cutoffs, the accuracy saturates at some value. There
are two different causes for this.

For the low action, the saturation is caused by the fact
that the limiting factor in the accuracy is the action inter-
polation. For more action points, or for a higher-order
spline, that saturation accuracy improves. When the ac-
tion interpolation is accurate enough, the accuracy is lim-
ited only by the number of the Fourier modes that we
keep. As can be seen from the plot, it appears that the
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Mode cutoff x.

FIG. 8. Time per iteration for the maps in Fig. 7. Iteration
time is independent of the number of action mesh points.
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accuracy of our maps is limited only by the machine pre-
cision (and storage requirements).

For the high action, the accuracy does improve for
more accurate action interpolations, but the accuracy
hits a “floor” at a few times 10~ 8. This floor is caused by
the fact that at the high action, the Taylor-series map be-
comes nonsympletic. A symplectic map can only approx-
imate a nonsymplectic map to a certain accuracy [this
maximum relative accuracy seems to be roughly equal to
the symplecticity violation 7 defined in Eq. (1.2)].

Figure 8 shows the iteration time for the map. The
curves for 10 action points and 20 action points coincide.
This is a result of using B splines; the time to evaluate the
B-spline series is only dependent on the order of the
splines, and not their number. However, the storage re-
quirements and creation time for the map are both qua-
drupled when the number of action points per dimension
is doubled.

Notice that the iteration time increases slightly as the
B-spline order is increased, as expected. Notice also that
the map at the larger action takes more time to evaluate
than the one at the lower action. This is because the
complexity of the map increases at a higher action, and
more modes are needed to compute that map to the same
accuracy (or at least to keep modes to the same relative
size). Finally, notice that on a log-log scale, the iteration
time-versus-mode cutoff lines are roughly linear. This is
in keeping with the fact that the Fourier modes for an an-
alytic function drop off exponentially in value with mode
number.

2. Wider action domain and long-term iteration

We next constructed a map over a larger region, and
tried to iterate that map for a long time (107 turns). The
action domain of the map was chosen as follows: For
each of the action values (2.0,2.0), (2.0,2.5), (2.0,3.0),
(2.5,2.0), (2.5,3.0), (3.0,2.0), (3.0,2.5), and (3.0,3.0), we
took the angle values (27i/10,27j/10), i€{O0,...,9},
JE{0,...,9}, and iterated each of these 800 initial con-
ditions for 1000 turns. We took the minimum and max-
imum values of I'" and I'? found in the iteration, added
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FIG. 10. Accuracy for 2D map over wider action domain,
5§=5X10"%

10% of the range to the maximum of each, and subtract-
ed that same amount from the minimum of each. This
gave the domain over which we would make the map.
We made one map for §=0, and another for §=5X10"*.
The accuracy and iteration time plots are shown in Figs.
9-12.

We then iterated these maps for 107 turns using 1074
as the cutoff and third-order B splines, starting at each of
the  values (I 1) and o=0, where
I'V, 1Y€ {2.0,2.5,3.0}. Each took about half a day, and
in each case the particle remained inside the domain of
the map.

3. Ten-turn map

We constructed a ten-turn map by using the tenth
power of the map constructed above as the source map T.
We used a map with third-order B splines and a mode
cutoff of y=10"* The results are shown in Figs. 13 and
14. We found that the ten-turn map has greater complex-
ity, with a much larger number of significant Fourier
modes. This increases the iteration time and comprom-
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FIG. 11. Iteration time for 2D map over wider action
domain, §=0.
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FIG. 12. Iteration time for 2D map over wider action
domain, §=5X10"*.

ises accuracy, with the result that the ten-turn map has
little advantage over the single-turn map in computing
long-term evolution.

In general, it is expected that a map for a period longer
than the minimum period in s of the Hamiltonian will be
relatively difficult to construct. (The minimum period for
our SSC model, and for most accelerators including lat-
tice errors, is one full turn.) An approximation to an n-
turn map for n > 1 will usually not be the nth power of
any map. For that reason, the basic period of the prob-
lem is not being accounted for, and spurious resonances
can arise. The situation is similar to the well-known
effect of symmetry breaking imposed on a lattice with su-
perperiods. Resonances that cannot be excited (in lowest
order) in the symmetric lattice can be excited when errors
break the symmetry, destroying superperiods. It may
eventually be possible to represent an n-turn map with
adequate accuracy, but extra caution is certainly called
for.

B. Three dimensions

We adopt the approach of Sec. IV, including the ap-
proximation described in the final two paragraphs of that
section.
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FIG. 13. Accuracy for 2D ten-turn map.

100

Iteration time (ms)
|
\
I
|
|
T
{ :
i
/ /

*—#Order 5 4
®——& Order 4
©®—@Order 3
10 | - — — -
0" 10" 10° 10° 10*
Mode cutoff %

FIG. 14. Iteration time for 2D ten-turn map.

1. Accuracy and iteration time

The results for accuracy and iteration time in three di-
mensions (3D) are similar to those for two dimensions.
The differences are mostly accounted for by the fact that
there are three dimensions of spline interpolation occur-
ring, but still only a two-dimensional Fourier analysis.
All plots were made for 10 action interpolation points in
each dimension. The range of § was taken to be
—5X107% to 5X107* We used expanded Chebyshev
points for the 8 mesh. Otherwise, everything is as in two
dimensions.

In the plot showing accuracy (Fig. 15), notice that the
saturation values for the accuracy are much larger than
they are for the two-dimensional map. This is accounted
for by the fact that the third dimension introduces inter-
polation error in addition to that already present in two
dimensions. Note that for the error calculation, there are
only three samples per dimension per mesh point instead
of 10 as in two dimensions.

For the iteration time (Fig. 16), notice that the depen-
dence of iteration time on spline order is larger (as ex-
pected, since more spline functions are evaluated), and
there is less difference between the low and high actions
(for the same reason).
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FIG. 15. Accuracy of 3D map, narrow action domain.
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2. Wider action domain and long-term iteration

We treated the three-dimensional case just as we did
the two-dimensional case, only we had some additional
initial conditions for determining the map domain: we
took three values of 8§ as initial conditions, 0.0, 5X 1074,
and —0.5X 1074, and iterated the source map for 1000
turns at each initial condition by varying 8 as a function
of the turn according to §¢sin(2wn /400+¢,), where
8,=5X10"* The accuracy and iteration time plots are
shown in Figs. 17 and 18. For a map with relative accu-
racy €=4X107°, the iteration time is 12 ms, as com-
pared to 34 ms for the Taylor-series source map. Of
course, the Taylor-series map is already much faster than
the tracking code from which it was derived.

We again ran for 107 turns, for the same initial condi-
tions as for the two-dimensional case, but with §=0 ini-
tially and varying as §gsin(27n /400). A single particle
took about a day to run on our workstations, and all the
iterates stayed within the domain of the map for the full
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FIG. 17. Accuracy of 3D map, wider action domain.

49 CONSTRUCTION OF SYMPLECTIC MAPS FOR NONLINEAR . .. 735

1000
4— Order 5
®—8 Order 4
@—@Order 3
@ 4
E
[}
E N
= 100 |
S L
S
s
8
4
.
>
10 .
10™ 10™ 10°® 10° 10

Mode cutoff x

FIG. 18. Iteration time for 3D map, wider action domain.

3. Survival plots for 10° turns

We created “survival plots” [7] for both the Taylor
series and a map approximating that Taylor series. The
plot shows the number of turns survived by a particle
started at the given x, x'=y'=0, x /y =1/, /B,. Here
B, and B, are the beta functions at the initial point [3].
The results are shown in Fig. 19. The plots for the Tay-
lor series and our map agree well as far as the long-term
behavior is concerned. Note that to cover a sufficiently
large region for these plots, a map with a very large num-
ber of modes and twice as many action points as before in
each dimension was created. The iteration time was
somewhat longer than before (about 20 ms per iteration),
though it is still faster than the Taylor series (about 34
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FIG. 19. Survival plot. The number of turns survived by a
particle, as a function of initial horizontal displacement x,
where the other initial coordinates are given by x'=y’'=0,
x/y =V'B./B,. Here B, and B, are the beta functions at the

initial point [3]. Circles are for the Taylor series; crosses are for
the map.
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ms). At these high amplitudes, the Taylor series is very
nonsymplectic. The large number of terms in our map
may arise from this nonsymplectic character.

The results we get using the Taylor series differ slightly
from those published by Yan et al. in [7]. This
discrepancy can easily be explained: our treatment of the
6 dependence is different, and our Taylor series is in fact
different from the one used by Yan et al.

VI. CONCLUSIONS, OUTLOOK,
AND RELATED WORK

We have demonstrated a numerical technique for con-
structing the canonical generator of a given source map.
In an application to the SSC, we found that the symplec-
tic map induced by the generator can accurately
represent the source map, and can be computed so
efficiently as to allow iteration for 107 turns in reasonable
time on a low-cost workstation computer. In three de-
grees of freedom, this map (the one using third-order B
splines and y=10"*) has an iteration speed about three
times that of the 12th-order Taylor series from which it
was constructed. This is gratifying, especially when we
recall that the Taylor map has a significant failure of
symplecticity in the region considered, close to the dy-
namic aperture. The symplectic condition has been met
to high accuracy, the only limitation on symplecticity be-
ing machine precision. No difficulty was encountered in
using Newton’s method to solve the evolution equations
defined by the generator.

Our advantage in speed over tracking with a symplec-
tic integrator is certainly substantial, but we are not in a
position to state a figure, since we have not run an SSC
tracking code on the same computer. Chao et al. [13] re-
port that the 12th-order Taylor map is more than a factor
of 10 faster than the tracking code from which it is de-
rived, on a Cray computer system.

We conclude that the present method is successful in
creating a symplectic map with good accuracy and high
speed of iteration, at least for an accelerator resembling
the SSC.

The present study has been limited in some respects by
the use of a Taylor series as the source map. For further
work, the source map should be defined directly as the re-
sult of a symplectic tracking code. This will allow
greater accuracy at large action amplitudes, will allow
clearer study of the crucial question of map representa-
tion near the dynamic aperture, and will give a frame-
work for weighing the cost of map construction against
its benefits.

In judging the accuracy of our map, we have compared
it only to the source map. A more reasonable test (even
after the aforementioned use of a tracking code as the
source map) is to see how well orbits of the map follow
invariant tori. It is generally supposed that ‘“phase er-
ror” builds up faster than “amplitude error” along a nu-
merical trajectory, i.e., an orbit may stay close to an in-
variant surface without being at the right place on the
surface. If the constructed map stayed as close to the

surface as the underlying tracking code, we would consid-
er it a success, irrespective of turn-by-turn agreement of
the map with tracking. Because highly accurate approxi-
mations to invariant tori are available [26], this is a test
that is both feasible and important as a way to validate
the mapping technique.

A very interesting topic for further work is the treat-
ment of random field errors in machines with supercon-
ducting magnets. These errors are so important that one
is forced to study a statistical ensemble of machines. A
single set of parameters for the SSC as embodied in our
source map is inadequate as a guide to machine perfor-
mance, since a change in magnetic fields within the range
of uncertainty could lead to rather different results for
the dynamic aperture. The cost of studying an adequate
ensemble has been a heavy burden in dynamic aperture
studies based on tracking. This burden might be
lightened greatly by the method of maps, if the statistical
scatter could be introduced in the expansion coefficients
defining the map, rather than in the field strengths
defining the Hamiltonian. Making a set of maps by per-
turbing the coefficients of a single map, one could gen-
erate an ensemble of mapping results at much less cost
than a corresponding ensemble from tracking. On the
other hand, to establish such a method one should study
at least the linear change of map coefficients due to a
change in field multipoles (totally random perturbation of
map coefficients might be hard to justify). This would be
difficult to do for all of the thousands of magnets in the
SSC, but it should be possible to do it for some typical or
particularly dangerous multipoles.

It has recently been found that ripple in magnet power
supplies can have an important effect on long-term stabil-
ity in proton rings [32]. This effect can be described in a
straightforward way in tracking codes. When magnetic
fields or rf systems are not stable in time, the usual con-
cept of a full-turn map is not valid. Ripple could be
simulated qualitatively in a mapping scheme, however, by
parametrizing the map as a function of linear tunes, then
modulating the tune turn by turn while iterating the map.

There are many other issues for future work: for in-
stance optimization of map construction, perhaps along
the lines of Sec. III F; inclusion of time of flight for a full
six-dimensional treatment; assessment of the usefulness of
explicit (nonsymplectic) maps in the Fourier-spline basis,
which allow very fast iteration; study of many-turn maps;
applications to other accelerators, especially the LHC
(Large Hadron Collider); application to the construction
of invariant tori and long-term bounds on the motion
[33].

There is also a possible range of applications quite
different from the one treated here, namely, to symplecti-
fy integrations that do not lend themselves to explicit
symplectic integrators. Such integrations need to be done
in certain small accelerators, due to the presence of rela-
tively complicated fields that arise from fringe fields of
magnets, wiggler magnets, and the like. In such a case,
one could integrate by an accurate but nonsymplectic
method for general differential equations, then find a gen-
erator to summarize the result in symplectic form.

We close with some comments on earlier and current
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related work. The technique of nonlinear maps for ac-
celerators has a fairly long history. Early on, Brown, Bel-
beoch, and Bounin [34] introduced maps in polynomial
form to describe the leading nonlinear effects in single op-
tical elements of a beam transport line, and made such
maps a part of the widely used code TRANSPORT [35]. In
later work, Dragt and co-workers [36] developed a sys-
tematic way to work out coefficients of polynomial maps
using algebraic properties of Lie operators. Their code
MARYLIE contains a library of maps for various common
accelerator elements, and allows analytic composition of
such maps to give a map for a string of elements, accu-
rate to a certain order. In fact, polynomial maps (trun-
cated Taylor series) for a full turn are obtained, up to the
first few orders. Although the technique becomes im-
practical at higher orders, for a time it provided the best
way of constructing polynomial maps.

A big advance in the derivation of Taylor-series maps
came with the advent of automatic differentiation. This
technique, which has been known to numerical analysts
for a long time [37-39] was first implemented in accelera-
tor physics by Berz [12] under the name differential alge-
bra. (We think it best to keep the original name, for com-
patibility with current practice in numerical analysis
[39].) Michelotti [40] made an alternative implementa-
tion, programming in C+ +. Given any numerical algo-
rithm to compute a function, with the requirement that
the function can be represented formally as a composi-
tion of power series, automatic differentiation determines
numerical values of any number of derivatives of the
function (at the origin of the power series), to machine
precision. This method avoids conventional numerical
differentiation (e.g., divided differences) by keeping track
of all relevant terms in the composed power series; thus,
the full-turn map defined by a tracking code can be
differentiated at the origin to provide the Taylor
coefficients of the map. The SSC map used in the present
work was obtained by this method. Although one can go
to much higher order than was previously achievable, for
the SSC it is still not possible with present computers and
algorithms to include enough terms to achieve symplecti-
city to machine precision in all of the relevant phase
space. Irwin has proposed a different organization of the
calculation that should give a more efficient generation of
Taylor coefficients [41]; to date it has not been imple-
mented.

The use of a mixed-variable generating function to
meet the symplectic condition was first implemented for
accelerator maps by Douglas and co-workers [14,42], and
was incorporated in MARYLIE. The map was written as a
polynomial in Cartesian coordinates, and the generating
function as a Taylor series in similar coordinates, with
coefficients determined by solving the nonlinear equations
relating map and generator, term by term. Because, in
general, a polynomial map implies a nonpolynomial
mixed-variable generating function, i.e., a function with
singularities, the series may have a restricted domain of
convergence. The resulting scheme, carried to high order
with the help of automatic differentiation, has been suc-
cessful in certain accelerator problems but not in others.
For instance, Yan, Channell, and Syphers report good re-

sults in an application to the SSC [43]. An application to
the ALS by one of the authors did not succeed. We
speculate that the Taylor representation of the generator
failed due to singularities arising from the strongly non-
linear character of this machine. Our own method of
constructing the generator in action-angle coordinates,
being valid for functions that are smooth but not analyt-
ic, may have a better chance of success in cases with
strong nonlinearity.

Irwin’s approach to enforcing the symplectic condition
[29], by composing simple symplectic maps, was con-
ceived in the framework of Taylor expansions. He con-
structs the symplectic representation so that it agrees
with the Taylor map to a certain order. Applications of
the Irwin representation to accelerators with compar-
isons to the Taylor maps have been carried out by Kleiss
and co-workers [14] and Forest [44]. Applications to
one-dimensional models have been made by Dragt and
co-workers [45]. In some cases, the symplectic map
agrees with tracking less well than the underlying Taylor
series. The choice of the simple maps that are composed
in Irwin’s approach is not unique. Dragt, Rangarajan,

" and Abell are investigating variations in which Irwin’s

rotations are replaced by drifts, or more general linear
symplectic transformations [46]. Preliminary results in-
dicate that certain isolated choices of the linear transfor-
mations greatly enhance accuracy. Another avenue,
more in the spirit of the present work, is to fit the Irwin
form directly to data from tracking. The approximation
theory of such a fit (whether it converges, how it con-
verges) is an open topic of considerable interest.

The use of a mixed-variable generating function in po-
lar coordinates was previously considered in the frame-
work of the Hamilton-Jacobi equation. The generator G
is the solution of the Hamilton-Jacobi partial differential
equation treated as an initial value problem, say, with
G =0 at s =0. Integration of the equation to compute G
presents no difficulty in principle. (The notorious small
divisors do not arise in this initial-value problem; they
occur only when one looks for invariant tori, correspond-
ing to G periodic in 5s.) Raubenheimer and Ruth [47] in-
vestigated an integration by superconvergent perturba-
tion theory, while Warnock and Ruth [48] solved the
equation iteratively in a Fourier basis, and Warnock,
Ruth, and Gabella [49] integrated with respect to s in a
Fourier basis. These methods proved to be less efficient
than our present technique, but sufficed to show that the
generating function of the map could be a tractable ob-
ject. The present method was proposed in [27], and first
implemented for a simpler model of the SSC in [50]. It
still seems likely that a more efficient integration of the
Hamilton-Jacobi equation could be devised and could
provide the most direct route to the generator.

In summary, it appears that the method of generating
functions, when implemented properly, can overcome
earlier difficulties of the mapping technique. The result-
ing symplectic map can be used to study the difficult
problem of long-term behavior of particle orbits in large
proton accelerators. There are interesting prospects for
further development of the technique and wider applica-
tions.
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APPENDIX

We sketch a determination of the preconditioning
transformation A by perturbation theory on Taylor-
series maps, the method actually used in our calculation.
Various other methods, not restricted to the Taylor-series
approach, might be used as well. As explained at the end
of Sec. IV, we work in the five-dimensional scheme. The
source map is given as a Taylor series in
z=(x,p1,X5,P,,0), truncated at the kth order:

Toz2)=T'Vz)+TP(z)+ --- +T®(z) . (A1)

By normal-form perturbation theory [51], we perform an
approximate normalization of T, through a transforma-
tion Z=B(z):

BT, B NZ)=R(I), I,=(X}+P?/2. (A2)

This is a transformation in the first four dimensions, de-
pending parametrically on 8. It is obtained as a Taylor
series, which can be represented in Dragt-Finn form [36]
as a product of exponentiated Lie operators, acting on
the identity function:

:f]:e:fz: .

Blz)~e e k() (A3)

where the polynomial f, is of the pth degree in the trans-
verse variables (x,p), with coefficients as polynomial
functions of 6. Now exp(:f;:) is a linear transformation
given in explicit form; it is the translation to the four-
dimensional fixed point, called 7 in Sec. IV. The second
factor exp(:f,:) corresponds to finding linear combina-
tions of x;,p;, i =1,2 that make circles under time evolu-
tion if nonlinear effects are dropped. For convenience we
approximate this transformation by a mixed-variable gen-
erating function (rather than by the infinite series that
defines the exponential, which would take too much time
to evaluate during map iteration). The transformation
defined by the generator is identified with A of Sec. IV.
We make no use of the higher factors in Eq. (A3). The
Dragt-Finn factorization was carried to high order only
to obtain (by means of an existing computer code) all
relevant powers of § in the coefficients of f, and f,. Ex-
cept for its nontrivial 8 dependence, the preconditioning
of T, is dynamically simple, amounting only to a transla-
tion to the fixed point and a normalization of linear
motions.

In problems with stronger nonlinearity, it might be
useful to include an additional factor or two in (A3). One
should not attempt to normalize the map very precisely,
however. We know that an exact normalization does not
exist globally, and we also know that a rather precise ap-
proximate normalization in a restricted region of phase
space [52] results in a complicated map with small but
rapid oscillations. We want the preconditioning to pro-
duce roughly circular motions in the (X;,P;) planes; to
ask for precisely circular behavior is self-defeating, be-
cause the ® dependence of the map would involve exces-
sively many Fourier modes.
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FIG. 2. The source map T (the Taylor-series map for the SSC) maps the points in the left figure into the points in the right figure.
This map satisfies our condition @. The annulus containing the mapped points is only slightly larger than the annulus containing the
original points. The second dimension, not shown, has similar character.
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FIG. 3. A map T that does not satisfy condition @: points are not mapped into a product of annuli; rather, there are image points
that lie close to the origin of the x,-p, plane.



FIG. 4. The second dimension for the map shown in Fig. 3.



FIG. 6. Result of iterating the 12th-order Taylor-series map of the SSC starting from a single initial condition. The initial action
is I=(3.0,3.0). This is the larger amplitude for the test of our mapping algorithm.



